Egv sztochasziikus dommancian alapuld dontesi modell

Fabidn Caaba Crantam bibra, Diana Homan Victor Zviarovich
Kearcakemén Folakola CARTEMA, CARTSMA, CARISMA
g3 BLTE Brunel Univeraiky Brunel Univeraty Brunel University



Overview

Introduction: Second-order Stochastic Dominance,
aoLD-based portfollo-cptimisation models,
Focus on the multi-objective 35D model of Roman, Darby-Dowman, and Mitra (2006),

Solution methods for the multi-objective 55D model

Dhrect sclution of laree LF problem, cutting-plane approach, and regularisation.
Computaticnal study: comparison of solution times,

Enhanced version of the multi-ob jective 55D model: Scaling ob jectives,
Computaticnal study: comparison of cptimal portfolic retum distnbutions,
Mimmisaticn of a convex nsk measure, connection with robust cptimisation,

Conclusion and future prospects.



Introduction: Second-order Stochastic Dorminance (55D)

R, " . random numbers (returns of different investments).

Ry, R if E(U(R) =E(U(R) holds

with any mondfonic and conecare utility function L7,

Rs>.. R if Rr,,_ R and R #... R



Introduction: Notation for 55D-bazed portfolio-optimisation models

n . number of assets into which we may mnvest,
R =(Ri1,...,R.)" : retums of the different assets (random vector).

r=(m,  .,z.)° : portfolio; capital invested in different assets (decision varnable),
Feazible portfclics: @ £ X,

Ry =RY2> : yield of portfolio 2.
(Rand om number in case decision is made on portfolio. )

x* £ X efficaent portfolioiff there iz no @ € X such that Agp .. fp-.

R benchmark vield (random number). Possibly the vield of a benchmark portfolio.



Introductior: 55D-constrained model Dentdheva and Ruszezyniskd (2006)

max B (fgp)

such that » = X,

Ry .. A

— 5850



Introduction: Multi-objective S5 model Roman, Darby-Dowman, and Mitra (2008)

Aszsurme discrete fintte distributions wath equally probakble cutcomes,
BEqguivalent defimtion of Second-Order Stochastic Dominace:

R, R . random numbers (retums of different investments):
2 1
1% ... % 7s . ordered outcomes of A,
r= . 7 o ordersd cutcomes of R

A= . A ilsequvalentte n+... 47 =2+, +7 for ¢=1,...,5
L - ", A

— &S50

T '

tail,( &) tail (&)

Remark: |
%t:ail?;(ﬂ) is the uncondifional expectation of the least & % 100% outcomes of K.



Introduction: Multi-objective S50 model HRoman, Darby-Dowman, and Mitra (2008)

Medel formulation: max ( taily (Rae), ..., talls (Rp) ):

multi-ob jective maximization 15 considered with respect to

the reference point T = ( tailq Iiﬁ), Co tﬂilg(ﬁ:l ) .

Futting into practice: dehine and maximise achievement function:

max [(2), where () = min (aﬂé (Ry) —ﬁ).

reX 1542 S



Introduction: Multi-objective S5D model Homan, Darby-Dowman, and Mitra [2006)

Computaticnal expenence: optimal peortfolio robustly cutperfonns stodk indes,



Solution methods for the multi-ob jective 55D model: Direct approach

Ay =AT»  Realismations of the andom vector B - w1, pl5)
(each cccurnng with prob. 1/5).

Computaticn of tails, using Rodafelar and Uryasev (2000)

=
tail, (Ap) = max ét—Z[f—rmeL.

teR :
j:

Lifting represenfafion as linear programming problem:

=
tail; (Ap) = max it — > d;

7=1
such that ¢, 4;.....ds 1R,

djzt—rITe, d;z0 (7=1,...,5)



Solution methods for the multi-ob jective 55D model: Diwrect approach

Implementation:

—  Lifting representation : Multi-objective model represented as
LF having 5% new variables.

—  HResulting LP problem solved by CPLEX.

BEzpenence: only small problems could be solved in realistic time
(number of assets: n = 76, number of scenarics: 5 < 600),



Solution methods for the multi-ob jective 55D model: Cutting plane approach

Computation of tails, using Rodafdlar and Uryasev (2000)

=

1. — T _ plAT
tail; (g ) max it Z[f T :EL_.

=1

Cutting-plane representafion using Kunz-Pay and Mayer (2006)

tail; (Re) = min ¥ v T
JET

such that 7 c {L,...,5}, |7F|=-+

Asfronomica number of cufs!
Eut in a cuffing-plane methed, we only need a few of them.



=olution methods for the multi-ob jective S5D model: Cutting plane approach

Cutting-plane representation of the multi-ob jective problem:

max v
such that # IR, x & X,

§ = S rilTe -7 foreadh J,cC{l,...5h |Z&|l=4
JEL.
where ¢=1,...,5,

Cutting-plane method can be effectively implemented: given F,
deepest cut can be constructed by amply sorting the cutcomes +



Solution methods for the multi-ob jective 55D model: Cutting plone approach

Structure of the special cuttingplane solver developed.

— Cut generaticn implemented in C,

— Cutting-plane model problems fonmulated by
AMPL modelling system [Fourer, Gay and Kemighan 1989),
using AMPL COM Component Library [Sadki 2008),

— Solver: Fort MP (Ellison, Hajian, Levkovitz, Maros, Mitra 1999),



Solution methods for the multi-ob jective SSD model: Cutting plane approach

We sclved a score of problems with n = 76 assets and up to 5 = 30, 000 scenancs.

For 5 < 10,000 usable near-optimal scolutions were found 1n 30 secs
(using loose relative stopping tolerance).

With absclute stopping tolerance set to e = 1le — 7,
soluticn time was less than 16 mins.



Solution methods for the multi-ob jective 55D model: Cutting plane approach

Typical iteration counts  (for n = 70 assets, stopping tolerance set to e =le— 7))

SCENATLOS cutting plane iteraticns
5,000 7L
7000 a3

10,000 T3
15,000 =1
20,000 100
30,000 o6




Solution methods for the multi-ob jective SSD model: Regularised cutting plane

Bundletype method applied for the sclution of the master problem:
Level Method of Lemarédhal, Wemirovskil, Nesterov (1995,

Favourable experience with vanants of Level Method adapted to stochastic programming:

— Fabian and Szoke (2007),
— Zviarovich, Ellison, Fabian, Mitra.



=olution methods for the multi-ob jective SSD model: Regularised cutting plane

We also solved our testproblems with the repularised method.,
(n = 76 assets, stopping tolerance set to e=1le— 7, level parameter set to 0.5.)

Tyvpical iteration counts:

SCenatios pure cutting plane lterations regularised iterations
5,000 71 23

T 00 23 27
10,000 T3 28
15,000 91 24
20,000 Lo 27
30,000 S5 27

BEzpenmental estimate on iteration count: G‘l: n ln% )



Enhanced multi-ob ective 55D model: Motwation and description

Original model of Roman, Darby-Deowrman, and Mitra:

max [(2),  where [(2) = min (ta.ilf; (Ra) —ﬁ).

rex 15is S

Cbservation: for cpfimal portfdio x*, we usually have

taily I:Hﬂj*-:] —ﬁ < taﬂili.ﬁ’.;rajl —ﬁ I:é=2,...,5).

scaling of tails need ed:

=~ ~ 1
max L&), where I(x) : ' :
TEX 1<ics ¢
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Enhanced multi-ob ective S5D model: Motwation and deascription

= = 1 . o~
max [, where I{2) = R ( tail; (Agp) — 7 )

Secaled-talls model can be formulated as

max o

such that #eIR, x e X,

-

Proof: tail;(R+9) = tail;(R) + 5.



Enhanced multi-ob jective S3D model: Computational study

Test data: 76 stodks from FTSE 100,
weelly observations dunng the peried January 1993 - December 2003,
(A set of 565 pieces of data for each stock, and also for the FTSE 100 stodk index.)

scenaros generated by geometnc Brownian motion,
parameters htted to historical weekly retumes.

Scenario sets of cardinality 5,000 7,000 10,000 15,000 20,000 30,000,

Benchmark distribution: distnbution of the FTSE 100 index, Not S5D-efficient,
Cptimal portfclio retum distubution dominates bendimark distnbution,



Enhanced multi-ob ective 55D model: Computational study

Retum distubutions represented by histograms (30,000 s




Enhanced multi-ob ective 55D model: Computational study

Retum distubutions represented by histograms (30,000 scenarics)
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Enhanced multi-ob ective 55D model: Computational study

Retum distubutions represented by histograms (30,000 scenarics)
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Enhanced multi-ob ective 55D model: Computational study

Retum distubutions represented by histograms (30,000 scenarics)




Enhanced multi-ob gective S53D model: Connection to 55D-constraints

Scaled-talls model

max ¥

such that FeIR, x=X,

Ry .o A+

salD-constrained model of Dentcheva and Ruszezynsk

max B (Agp)
such that a = X,

Re ... R.

[m)

A zolution method for the scaled-tails problem can be used
to solve the Lagrangian of the S5D-constrained problem.



Enhanced multi-ob jective SSD model: Formulation with convex risk measure

Secaled-talls model

max 7

such that FeR, x <X,

-

fy =, . A+




Enhanced multi-ob jective SSD model: Formulation with convex risk measure

ocaled-talls model: Baquivalent formulation:
max ¥ min g
such that FeR, x <X, such that pe R, xe X,

-

Rm t.‘3'.‘3'|:I"H'—|_EEI' H$+I'_:' tg_-;'l:. E-




Enhanced multi-ob jective SSD model: Formulation with convex risk measure

o caled-tals model: Houivalent, formulation:
max min g
such that e IR, x & X, such that pe IR, xe X,
Ry Faen R+7. Ry +p .. K.

Compact formmulation:

:%ﬂé% ﬂ:ﬂm), where EI:R?I Z=l‘ﬂiﬂ{ e ‘ R+p msap R }



Theory of risk measures

Artmer, Delbaen, Eber, Heath (1999) ; Delbaen (2002,

Convex risk measures
Heath (2000) ; Carr, Geman, Madan (2001) ; Follmer, Schied (2002).
Roclafellar, Uryasev, Zabarankin (2002-2008) ; Rodkafellar (2007),

A rigk measure g 15 convex if it satishes the following criteria;

Convezify.  p(AR+(1 - A:IRI) = AR+ (1 — Xp(R)  for random retums R, A',
and 0= A= 1.

Meonotonicty: plR) < oA"Y  for random returns R, R, A= R

Translation eguivariance: p(A +p) =p(R)—p for random retum A, and p = IR.



Enhanced multi-ob jective 55D model: Formulation uith conver risk measure

-

IEI:R) = ]'Ilj_tl{ g IR ‘R—I—g T asg AL } 15 a convex risk measure,

Using dual representation of convex nsk measure: worst-case analysis.
Connection with robust optimisaticn,



Conclusion
Cutting-plane appreoach for the multi-objective model of Roman, Darby-Dowman, Mitra

3 orders of magnitude faster than direct approach  (for 5 = 600),

Mo lirmit for the nuwmber of scenarios,

Effect of resularisation

[teration count reduces to one-third (forn =76, e=1le—7, 5 < 30,000)

Very good scaleup properties, [teration count: G'I: n ln% :I

Bnhanced model

Optimal portfclio has superior return distribution.,

Connection with robust optimisation. NN HHM
) 1.




Future prospects

Dual methed for S5D-constrained problems.

Vanance taken into account.

Two-stage generalization,



Prospective work: Dual method for 55D-constrained problems

(Feneralised version of the S5D-constrained model of Dentcheva and Ruszezynsk:

max B[ Ax)
such that @ € X,

gy t.-3;.-3;.:- ﬁ"’ RE

where v € [l glven parameter,



Prospective work: Dual method for 55D-constrained problems

(Feneralised version of the S5D-constrained model of Dentcheva and Ruszezynsk:

max B[ Ax) max B (figp)
such that @& e X, such that x = X,
Ay tssﬂﬁ+’r, E(R:r)i’h

where v € [l glven parameter,



Prospective work: Dual method for 55D-constrained problems

(Feneralised version of the S5D-constrained model of Dentcheva and Ruszezynsk:

max B[ Ax) max B (figp)
such that @& e X, such that x = X,
Ay tssﬂﬁ+’r, E(R:r)i’h

where v € [l glven parameter,

In practice, the parameter ¥ 15 set by a dedsion maker.
We can help them by approsmimating the efficient frontier,
solution of Lagrangian problems

max B (Rz) — A(Rz)

with different values of A > 0,



Prospective work: Variance token into cecount

Mean-risk models using two sk measures, Roman, Mitra, Datby-Dowman (2006):

Portfolio represented by {erpectation, rarigncs, CVaR) of portfalio yield.
Approximation of efficient frontier constructed,

Out-of sample analyas: superior peformance of non-sxtremal sfaent portfolice.

Froposed extension of multi-objective mod el

Represent portfolio by {ezpectation, variancs, p) of portfolio yield.
Approsimation of efficent frontier to be constructed by cuttingplane approach.,



Prospective work: Two-stage 55I) models

2 time perlods,

we can rebalance our portfolio at the beginning of each pericd,

let us compare benchmark yield and porffdic yield at the end of the second peried.



